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Visual object recognition relies critically on learning. However, little is known about the effect of object learning in human visual cortex,
and in particular how the spatial distribution of training effects relates to the distribution of object and face selectivity across the cortex
before training. We scanned human subjects with high-resolution functional magnetic resonance imaging (fMRI) while they viewed novel
object classes, both before and after extensive training to discriminate between exemplars within one of these object classes. Training
increased the strength of the response in visual cortex to trained objects compared with untrained objects. However, training did not
simply induce a uniform increase in the response to trained objects: the magnitude of this training effect varied substantially across
subregions of extrastriate cortex, with some showing a twofold increase in response to trained objects and others (including the right
fusiform face area) showing no significant effect of training. Furthermore, the spatial distribution of training effects could not be
predicted from the spatial distribution of either pretrained responses or face selectivity. Instead, training changed the spatial distribution
of activity across the cortex. These findings support a dynamic view of the ventral visual pathway in which the cortical representation of
an object category is continuously modulated by experience.
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Introduction
Object recognition and discrimination rely critically on learning
(Goldstone, 1998; Schyns et al., 1998; Tanaka, 2001; Sheinberg
and Logothetis, 2002; Op de Beeck et al., 2003; Palmeri et al.,
2004), yet little is known about how learning affects object rep-
resentations in the brain. Here, we conduct a broad exploration
of the nature and spatial distribution of the effects of object dis-
crimination training in the human ventral visual pathway.

The brain regions most critical for object recognition are
found in the ventral pathway of the primate visual system (Logo-
thetis and Sheinberg, 1996; Grill-Spector, 2003; Tanaka, 2003).
However, little is known about the effect of object learning in
human visual cortex and in particular how the spatial distribu-
tion of training effects relates to the distribution of object and face
selectivity across the cortex. Neurophysiological recordings in
monkeys have shown that training on discrimination and recog-
nition of objects is associated with changes in the strength and
object selectivity of neural responses (Miyashita et al., 1993;

Ringo, 1996; Booth and Rolls, 1998; Kobatake et al., 1998; Baker
et al., 2002; Sigala and Logothetis, 2002; Rainer et al., 2004; Freed-
man et al., 2006). However, because neurophysiological studies
cannot easily sample a wide area of cortex, these investigations
have not determined whether the changes in neural responses
with training are widespread across the ventral visual pathway, or
whether they are restricted to specific regions within this path-
way. The few functional magnetic resonance imaging (fMRI)
studies that have investigated neural effects of object training in
humans (Gauthier et al., 1999; Grill-Spector et al., 2000; Gauthier
and Tarr, 2002; Kourtzi et al., 2005; Sigman et al., 2005) have
focused on regions of interest (ROI) analyses, and they did not
addressed the distribution of training effects across the extrastri-
ate cortex, in particular how training effects relate to the spatial
distribution of pretrained object selectivity and face selectivity.
Thus, although it has been suggested that changes in object rep-
resentations caused by training might be restricted to small sub-
regions of the ventral visual pathway (Logothetis et al., 1995;
Gauthier et al., 1999; Henson et al., 2000), little is known about
the magnitude, sign, and spatial distribution of training effects
across visual cortex.

We scanned subjects before and after object discrimination
training to ask whether and how training changes the spatial
distribution of activation across the cortex. Our results indicate
that training produces an overall increase in the response to
trained objects, but the spatial distribution of this training effect
is not homogeneous. Training increases the response much more
in some regions in the visual cortex (e.g., right lateral occipital
gyrus) than in other regions. Furthermore, the strength of the
training effect in a subregion of cortex cannot be predicted simply
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from the response of that subregion before training. Finally, no
significant training effect was found in the fusiform face area.
Thus, training appears to change the spatial distribution of activ-
ity to trained objects in a way that cannot be predicted either from
the spatial distribution of pretrained responses or from face
selectivity.

Materials and Methods
Subjects
Nine right-handed participants (three males) participated in this exper-
iment. All were college or graduate students in the Boston area. Informed
consent was obtained and all procedures were approved by the Institu-
tional Review Boards of Massachusetts Institute of Technology and Mas-
sachusetts General Hospital.

Stimuli
We used custom algorithms written in Matlab to create three new classes of
objects: smoothies, spikies, and cubies (Fig. 1). These classes were designed to
have different shape properties and to seem novel (i.e., they did not imme-
diately suggest associations with everyday object categories).

Within each object class, we manipulated four shape dimensions (Fig.
1). Most dimensions were a composite of several simple shape parame-
ters (e.g., size/thickness of several shape protrusions), and different di-
mensions changed aspects in different locations on the stimuli. Thus,
objects could not be discriminated by looking at only a small part of each
object, and more than one location of the object had to be taken into
account to attain good discrimination performance.

Each dimension was manipulated in six steps (values 0 –5). Each class
contained 1296 (64) exemplars with an integer step on each dimension.
From these objects, we chose 80 reference objects distributed across the
four-dimensional object space in each class. For each of these objects, we
created eight extra exemplars that differed from that reference object by
half a step on only one dimension. The distance between objects in a class
was expressed as the number of integer steps difference on each dimen-
sion, summed across dimensions, so the maximum distance was (6 �
1) � 4 � 20 (for objects with an extreme value on each dimension). The
construction of the object space avoids recognition of individual exem-
plars given that each object class consisted of a high number of exemplars
that covered the space with a density that was much higher than behav-
ioral “just-noticeable differences” (even for trained subjects) (see Fig. 2).

These object exemplars were shown at about the same size during
training and scanning with a maximum size of 8 visual degrees. Stimulus
presentation and response registration was controlled using PsychTool-
box (Brainard, 1997; Pelli, 1997).

Shape discrimination training
Subjects were trained with one object class (counterbalanced across sub-
jects, three subjects per class) during at least 10 training sessions, each
lasting �1 h. The length of this training (in number of hours and number
of training days) is longer than any of the previous fMRI studies with an
object training procedure (Gauthier et al., 1999; Kourtzi et al., 2005;
Sigman et al., 2005). The training task is illustrated in Figure 1. In each
trial, five object images were shown one at a time (one reference and four
test objects; stimulus duration 300 ms; interstimulus interval, 1000 ms),
and subjects had to determine for each of the test objects whether it
matched the reference object (left key press) or not (right key press). The
reference object was one of the 80 reference objects of a class; the test
objects could be any object from the same class. The percentage of match
stimuli was 50%. Subjects were told that they could use any stimulus
feature for the discrimination, except object position (which was ran-
domized for each individual stimulus with 3.5 visual degrees as the max-
imum position offset from the fixation point). The first training session
started with task instructions, followed by at least 10 practice trials (40
responses) with everyday objects to assess proper understanding of the
instructions and to acquaint subjects to the speed of object presentation
and responses.

Each training session consisted of three blocks of 80 trials (with five
stimuli per trial; this amounts to a total of 1200 stimulus presentations
per training session). The first block of trials was used to compare per-
formance across sessions (see Fig. 2). This block had the same uniform
distribution of “nonmatch” images from five distance conditions (0.5, 2,
4, 8, and 12) throughout the whole experiment (“method of constant
stimuli”), and no feedback was given to signal the correctness of re-
sponses. In the two other blocks, difficulty was adapted to each subject’s
performance aiming for between 70 and 75% correct, and color feedback
was provided after each response. In these blocks, visual feedback was
given at the end of the interstimulus interval by means of a foveal colored
square (1.5 � 1.5°) indicating the response was correct (green), incorrect
(red), or that no valid response was registered (white).

Most subjects seemed to reach a steady performance level before or
around the fifth training session. Furthermore, their verbal reports indi-
cated that they were consciously using most but not all four shape dimen-
sions. To make them aware of all dimensions, we started the later training
sessions of all subjects with a short rapid stimulus presentation with
object exemplars presented at a rate of three per second, without an
interstimulus interval or a position offset, and with successive objects
changing on only one dimension. With this presentation, even very small
object changes are obvious. The further protocol and stimuli of each
training session (with three blocks of 80 trials) was not changed.

After all training sessions and the second scan session, we tested per-
formance for all three object classes in an extra test session at distances
0.5, 2, 4, 8, and 12, and without color feedback. After this session, we
asked subjects whether some of the object classes resembled “real-life
objects” and, if so, which objects.

Behavioral performance as shown in Figure 2 is computed from the
first block of trials in each session (the block that contained trials with the
same stimulus distance across all sessions). Performance is expressed in
units of sensitivity (d’), which reflects the difference between standard-
ized hit rate (hits are the correct responses for stimuli that did not match
the reference stimulus of that trial) and standardized false alarm rate
(false alarms are the incorrect responses for stimuli that matched the
reference stimulus of that trial).

Significant sensitivity for individual shape dimensions was assessed in the
last three training sessions by calculating the 95%-confidence intervals of the
difference in performance between two sets of trials for each dimension:
trials with stimuli with a large distance on that dimension and trials with
stimuli with a small or zero distance on that dimension but with the same
overall distance on other dimensions as the first set of trials.

Figure 1. Stimuli (Stim) and tasks used in the training experiment. For each of the three
classes (smoothies, spikies, and cubies), exemplars were constructed from a four-dimensional
object space. Each exemplar had a value from 0 to 5 on each of four shape dimensions. The top
three rows show exemplars from each class: value 0 on each dimension (far left), value 5 on one
dimension and value 0 on the other dimensions (middle four exemplars), and value 5 on each
dimension (far right). The bottom half of the figure shows the task used to train subjects in
shape discrimination.
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Scanning
Subjects were scanned two times, once before and once after the shape
discrimination training. Scanning was performed at the Martinos Center
for Biomedical Imaging at Massachusetts General Hospital (Charles-
town, MA) in a 3T Siemens (Erlangen, Germany) Trio magnet with an
eight-channel phased-array head coil. Functional images were acquired
with an echo-planar imaging sequence including an integrated parallel
acquisition technique (105 time points per time series; repetition time,
3 s; echo time, 37 ms; 128 � 128 matrix; 1.4 � 1.4 mm in-plane voxel size;
20 slices approximately perpendicular to the calcarine sulcus covering
the entire occipital and occipitotemporal cortex with slice a thickness of
2 mm and interslice gap of 0.4 mm). Note that dorsal and anterior parts
of the cortex (e.g., parietal and frontal areas) were not covered by our
slices. In each session, we also acquired a T1-weighted anatomical image.
We made sure that head position in the post-training session was very
similar to the position in the pretraining session. Furthermore, post-
training slices were positioned manually to be as close as possible to the
slices in the first session by visual comparison of pretraining and post-
training overlays of the slice outlines on the anatomy.

Functional runs consisted of object runs (with presentation of
smoothies, spikies, and cubies) and localizer runs (used to identify ROI)
acquired in an interleaved manner in pairs (object 1, object 2, localizer 1,
localizer 2, object 3, object 4, localizer 3, localizer 4, object 5, object 6).

Object runs. Object runs consisted of 15 s blocks of fixation spot,
smoothies, spikies, cubies, and Fourier-scrambled images. Stimuli were
presented around the foveal position (maximum position offset from
fixation point was 3.5 visual degrees) for 300 ms with a 450 ms inter-
stimulus interval (20 stimuli per 15 s block). There were four 15 s blocks
for each condition in each run and 80 different stimuli (the reference
objects from the training task) per condition. We acquired four to six
object runs in each session for each subject (at least 320 stimulus presen-
tations per object class per scan session).

Localizer runs. Localizer runs consisted of 15 s blocks of fixation spot,
human faces, objects, outdoor scenes, and Fourier-scrambled images. In
each block, stimulus position was either in the left visual field or the right
visual field (border of the stimulus 1.3 visual degrees from the foveal
position), with a jitter in the vertical stimulus position of maximum 2°
from the horizontal midline. This lateralized stimulus position provided
us with a crude localizer of parafoveal retinotopic cortex. The contrast of
[contralateral � ipsilateral] reveals a continuous activation from the
calcarine sulcus up to the border between retinotopic and object-
selective cortex (Grill-Spector, 2003). We acquired four localizer runs in
each session for each subject.

FMRI task. Subjects performed a demanding color-change detection
task during all runs. This task required subjects to press a key each time an
object had a different color than the previous object (three changes in
each block of 20 stimuli). Low-saturated color was added to the gray-
scale images by increasing the value of one color channel and decreasing
the value of the other channels by a factor c. This parameter was the same
for all conditions in a run, but it was adapted between runs to keep the
task demanding for the subjects.

The trained shape differences were irrelevant for the color task, and
this had several advantages. First, subjects received no training in shape
discrimination for the two untrained object classes. If subjects had per-
formed the training task in the scanner, then the pretraining scan session
would have provided subjects with training in all object classes, not only
the to-be-trained object class. Second, the training caused superior per-
formance on the trained objects in the training task, and this perfor-
mance difference in the second scan session (and related attention or
difficulty confounds) would have made the interpretation of the data
difficult. Using the color task instead, there was no difference in perfor-
mance between trained and untrained objects during the post-training
scans, either in the percentage of detected color changes (87 and 88%,
respectively; t(8) � 1.28; p � 0.20) or reaction time (458 ms and 463 ms,
respectively; t(8) � 0.71; p � 0.40). Thus, differences in color task per-
formance cannot explain differences between trained and untrained ob-
ject classes in blood oxygen level-dependent (BOLD) response. Finally,
Gauthier et al. (2000) showed that effects of expertise in face-selective
cortex are correlated with behavioral measures of expertise in an orthog-

onal task but not in an object discrimination task, which is an additional
argument to use an orthogonal task.

Analysis of imaging data
Data were analyzed with the Freesurfer functional analysis stream
(http://surfer.nmr.mgh.harvard.edu/) (Dale et al., 1999; Fischl et al.,
1999), and froi (http://froi.sourceforge.net), as well as custom Matlab
code. Preprocessing involved motion correction, smoothing with a
Gaussian kernel of 3 mm full width at half maximum, and normalization
of the mean signal amplitude in each functional run. The predictor for
each stimulus condition (0 or 1 at each time point) was convolved with a
gamma function, and the general linear model was used to compute the
response of each voxel in each condition. The response for each condi-
tion in each voxel is expressed in units of percent signal change (PSC),
which is the response in each condition minus the response in the fixa-
tion condition, normalized by the mean signal value at each voxel. Sig-
nificance maps of the brain were computed by performing t tests for
pair-wise comparisons of conditions, and thresholded at p � 0.0001
(uncorrected for multiple comparisons). We used this same statistical
threshold throughout all analyses to define regions of interest. The aver-
age response across all voxels of an ROI was computed for each individ-
ual subject, and this response was combined across subjects by averaging.

The preprocessing did not involve any spatial normalization of sub-
jects in a common reference space (e.g., Talairach transformations).
Given the anatomical variability between subjects, such normalization
would obscure finer spatial patterns in activations, certainly at the high
resolution that we used. We performed a registration of the functional
images of each subject in each session to that subject’s anatomical image.
We used the resulting transformation parameters only to map the ana-
tomically defined V1/V2 ROI to the functional images, and for the illus-
tration of activation loci shown in Figure 4 and supplemental Figure S2,
available at www.jneurosci.org as supplemental material. All other re-
sults do not involve any registration to individual or group anatomies.

Before statistical analyses, data were preprocessed in two ways that
differed in the reference image used to align all functional volumes (Cox,
1996). In the first preprocessing stream, data from the two sessions were
processed independently and aligned to the first image in the first func-
tional time series of each session. This independent preprocessing of the
two sessions was used for all analyses that did not require single-voxel
alignment (whole-volume analysis and ROI analysis). In the second pre-
processing stream, the functional data of the two sessions of each subject
were coaligned directly (without an intermediate step through anatom-
ical data) by aligning all data to the first image of the pretrained session.
These coaligned data were used in two analyses: comparing pretrained
and post-trained spatial distribution of activity across all visually active
voxels, and investigating the pretraining response of voxels with a signif-
icant post-trained preference for trained objects (trained voxels).

Comparison of pretrained and post-trained distribution of activity. We
investigated the relation between pretrained and post-trained responses
across all visually active voxels (see Fig. 6, scatter plots). Visually active
voxels were defined as all voxels that responded significantly stronger
than fixation ( p � 0.0001, uncorrected) to at least one of the three object
classes in at least one of the two sessions. We followed the standard from
previous studies of distributed response patterns where the response of
each voxel in each session is normalized to a mean of zero by subtracting
the mean response across all object classes (Haxby et al., 2001). The
relation between pretrained and post-trained responses was investigated
with Pearson product moment correlations and orthogonal regression.
Orthogonal regression (Van Huffel and Vandewalle, 1991) minimizes
the perpendicular distances from the data points to the regression line,
and is preferable over standard linear regression in cases where both
variables are (noisy) measurements. With orthogonal regression, the
slope of the fitted line does not equal Pearson’s correlation. For example,
in the schematic scatter plot of Figure 3a, the slope of the line fitted with
orthogonal regression reflects the global orientation in the cloud of
points (slope of 1), even though the correlation between the two coordi-
nates is smaller than 1.

Discrimination index using pretrained and post-trained distribution of
activity. The percent correct discrimination was calculated from pair-
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wise comparisons of correlation coefficients, following previously de-
scribed methods (Haxby et al., 2001; Spiridon and Kanwisher, 2002). A
given pair-wise comparison between object classes A and B was deemed a
correct identification of class A if the correlation coefficient between the
pretrained and post-trained maps of class A was higher than that between
the pretrained map of A and the post-trained map of B. For each subject,
we calculated a separate index for the two pair-wise comparisons that
involve the trained object class as one of the two object classes, and for the
pair-wise comparison between the two untrained object classes. These
two indices are shown for different cortical regions in Figure 6d. As
discussed by Spiridon and Kanwisher (2002), the percent correct dis-
crimination is influenced strongly by voxel set size (lower performance
for smaller set sizes). To be able to compare the performance between
regions with a different total size and between subjects, we selected as
voxel set size the number of voxels in the smallest region found across
regions and across subjects, N � 21. If a region in a subject was larger,
then the correct discrimination for that region in that subject is based on
the average performance over 100 different subsets of 21 randomly se-
lected voxels.

Pretraining responses of trained voxels. The second use of the between-
session alignment is in the investigation of the pretraining responses of
voxels with significant post-training selectivity for trained versus un-
trained objects (trained voxels). To select these voxels, we used runs 1, 2,
5, and 6 of the object runs of the post-training session as selection runs.
Runs 3 and 4 were used as test runs to quantify training effects indepen-
dently from the data used to select the voxels. Similar results were ob-
tained with other divisions of the data in selection runs and test runs.

Validation of between-session alignment. Control analyses showed that
the between-session alignment worked well. Voxels with a post-training
preference for stimulus conditions that were not expected to be changed
by training (untrained stimuli) showed the same preference before train-
ing (see Results) (supplemental material SM4 and supplemental Figure
S3c, available at www.jneurosci.org as supplemental material). Further-
more, we always compare results for the trained class with results for the
untrained classes, and conclusions are based on a difference between
trained and untrained classes. Given that blocks with trained and un-
trained classes were presented intermittently, any problem with coregis-
tration would affect both conditions equally. Finally, we confirmed that
the quality of the between-session alignment with this method is at least
as good as with a method in which each functional session is coregistered
with an anatomical reference image (see supplemental material SM1,
available at www.jneurosci.org as supplemental material).

Magnitude of training effects. The training index, shown for different
ROIs in Figure 5, is computed as [PSC(trained objects post-training) �
PSC(untrained objects post-training)] � [PSC(trained objects pretrain-
ing) � PSC(untrained objects pretraining)].

Whenever we compared trained versus untrained, this was a compar-
ison of the data for the trained class with the data of the two untrained
classes. Strictly speaking, the label “trained” is not meaningful before
training (when all classes are still untrained). We use the label “trained
before training” to refer to the object class that is trained during the
training sessions, and “untrained before training” refers to the two object
classes not shown during training.

Results
Effect of training on behavioral performance
As shown in Figure 2, discrimination training markedly im-
proved discrimination performance (d’) from the first to the last
training session (t(8) � 4.84; p � 0.001, paired t test). Exemplars
within each object class could be different along up to four shape
dimensions and in the last three sessions, individual subjects
showed a significant sensitivity ( p � 0.05) for a median of three
of these four shape dimensions (see Materials and Methods).
Although subjects showed an overall improvement even for un-
trained objects, much of the training effect was specific to the
trained class: discrimination performance after training was sig-
nificantly higher for trained compared with untrained classes
(t(8) � 4.07; p � 0.005, paired t test).

Effect of training on class-specific activations in visual cortex
As mentioned in the Introduction, it is not clear how training
effects are distributed across visual cortex. Several distinct possi-
bilities can be distinguished. The simplest possibility is that train-
ing produces an overall change or additive offset in the magni-
tude of the BOLD response that is constant across visual cortex.
Importantly, this change could either be an overall increase in the
response after training, or an overall decrease. In its strongest
version, an additive offset would result in the same training effect
in each visually responsive subregion, such that the spatial distri-
bution of activity across cortex will not change. This is illustrated
in Figure 3a. In this figure, the blue crosshairs refer to the com-
bination of hypothetical pretraining and post-training responses
expected for objects that are not trained during the training
phase. The red arrows refer to the hypothetical additive offset
caused by training expected for objects that are trained during the
training phase.

In contrast, the size of the training effect in each subregion
might be proportional to the response in that subregion to the
to-be-trained objects before training, a pattern we will refer to
here as a multiplicative gain (Fig. 3b). For example, if training
increases the response in visual cortex, then a multiplicative gain
would give the largest increase in subregions with the largest
pretrained response. This kind of training effect would amount to
a strengthening of the already existing spatial distribution of ac-
tivity associated with an object class, akin to the proposed effects
of attention at the single-neuron level (McAdams and Maunsell,
1999). As illustrated by the blue and red line in Figure 3b, a
multiplicative gain would increase the slope obtained by orthog-
onal regression of the post-trained responses to the pretrained
responses (see Materials and Methods).

A rejection of each of these predictions would mean that train-
ing changes the spatial distribution of activity across cortex in a
way that is not determined by the pretrained responsiveness to
the trained stimulus. As illustrated in Figure 3c, positive evidence
for such a change in the spatial distribution of activity would be a

Figure 2. Sensitivity (d’) in the shape discrimination task as a function of time (training
session). Sensitivity is shown separately for small (0.5), intermediate (2 and 4), and large (8 and
12) distances in object space (see Materials and Methods for explanation of distance metric).
Performance is shown for the first block of trials in each of the 10 training sessions and in the test
session. For the test session at the end of the experiment, the data for the trained object class are
shown with filled symbols and the data for the untrained classes with open symbols. Error bars
show the SEM across subjects.
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lower correlation between pretrained and post-trained responses
for trained objects compared with the correlation for untrained
objects. These possibilities are not mutually exclusive, and hy-
brids are possible. The test of the specific predictions of these few
hypotheses will inform us about which combination provides the
best account of the effect of training.

One specific proposal of how training might change the spatial
distribution of activity, is that training will increase the response
in face-selective regions, especially the right fusiform face area
(rFFA), even for objects that did not activate this area strongly
before training (Diamond and Carey, 1986; Gauthier et al., 1999).
Although previous studies have argued in favor of this “expertise
hypothesis” (Gauthier et al., 1999, 2000; Xu, 2005), the design
and analyses in these studies were not suited to differentiate the
expertise hypothesis from other effects such as an additive offset
or a multiplicative gain. We will investigate whether the predic-
tions of this hypothesis hold when subjects are trained to discrim-
inate objects.

To characterize the effect of training, the fMRI data were an-
alyzed in four different ways, which we discuss in turn: (1) com-
parison of the number of voxels across visual cortex that prefer
trained to untrained stimuli (or vice versa) after versus before
training; (2) comparisons of the response to trained versus un-
trained stimuli before versus after training within functionally
defined ROIs; (3) voxel-wise analyses of the effect of training on
the distributed response pattern across visual cortex; and (4)
comparison of the response to trained versus untrained stimuli
before versus after training in voxels with maximal post-training
preference for trained objects.

Does training produce increases or decreases in response?
We performed a whole-volume analysis of the data for each ses-
sion independently (without between-session coregistration).
For each subject, we selected all voxels that were significantly
activated ( p � 0.0001, uncorrected) in the contrast [trained vs
untrained] (Fig. 4). Significantly more voxels preferred trained
above untrained objects after training compared with before
(mean number of voxels � SE across subjects; 366 � 124 after
training vs 82 � 31 before training; t(8) � 2.8; p � 0.02, paired t
test); there was no significant difference in the number of voxels

preferring untrained to trained objects af-
ter and before training (62 voxels after vs
167 voxels before training; t(8) � 1.7; p �
0.1). Figure 4 illustrates this difference be-
tween the two sessions in four subjects.
Each of these subjects showed more voxels
activated with the contrast [trained � un-
trained] after training than before train-
ing. These activated voxels were not all
clustered together in a single contiguous
region, but instead formed multiple small
clusters (see How large are the largest
training-related response increases).
Many of these small subregions found
with the contrast [trained � untrained]
were intermingled or overlapping with
more numerous and larger subregions sig-
nificantly activated in the contrast [ob-
jects � scrambled], a contrast that is typi-
cally used to define object-selective
cortical regions (supplemental Fig. S2,
available at www.jneurosci.org as supple-
mental material). In summary, training

was associated with an increased response in multiple subregions
of extrastriate visual cortex.

How do training effects relate to pretrained responses and
object and face selectivity?
The previous analysis indicates that training increased the re-
sponse to trained compared with untrained objects in at least
some subregions in and around object-selective cortex. This re-
sult does not show how widespread this effect is. All visual regions
might show the same effect (additive offset), and we might have
simply missed it in many regions because the effect is small and
we use thresholded maps. In contrast, the location of the effects
might be related to pretraining response strength (multiplicative
gain), it might be centered around face-selective regions, or it
might change the spatial distribution of activity across cortex in
some other way. To test these hypotheses, we performed a ROI
analysis in three ROIs: the lateral occipital complex (LOC; from
the contrast [objects � phase-scrambled objects]), the rFFA
(from the contrast [faces � objects]), and foveal V1/V2 (anatom-
ically defined as the area around the posterior tip of the calcarine
sulcus). These ROIs were defined separately within each scanning
session (before and after training). Supplemental Figure S2
(available at www.jneurosci.org as supplemental material) illus-
trates the between-session replicability of the functional activa-
tions used to define the functional ROIs for the case of [objects �
scrambled images]. When performed in isolation, ROI analyses
can miss important information outside these ROIs (Friston et
al., 2006; Saxe et al., 2006), but they provide critical information
about the distribution of effects and their relationship to other
functional criteria when used in combination with whole-volume
analyses (see Results, Does training produce increases or de-
creases in response?) and distributed pattern analyses (see Re-
sults, What is the effect of training on the distributed response
pattern across visual cortex?).

The average response in each of these ROIs before and after
training is shown in Figure 5a. Training effects were revealed by a
two-factor repeated-measures ANOVA that found a significant
interaction between session (before vs after training) and stimu-
lus condition (trained vs untrained) in LOC (F(1,8) � 50.09; p �
0.001), but not in rFFA (F(1,8) � 1) or foveal V1/V2 (F(1,8) � 3.73;

Figure 3. Different ways in which training could change the strength and spatial distribution of activity across cortex. The blue
crosshairs in these panels represent for four hypothetical subregions the response before and after training for an object class that
was not trained during the training phase, and the schematic blue line represents the corresponding regression line. The red
arrows and corresponding regression line illustrate three ways in which training could change these responses if this object class
would be trained during training. a, Additive offset; training could increase or decrease activity with a constant that is the same in
each subregion (all red arrows are identical). b, Multiplicative gain; the increase or decrease in activity could depend on the
pretrained response in each subregion, with for example the strongest increase in activity in subregions with the strongest
pretrained activity (red arrows largest on the right). This will change the slope of the regression line. c, Change in spatial
distribution of activity; the effect of training could vary between voxels in a way that is not related to pretrained response (red
arrows of variable length). This will change the correlation between pretraining and post-training responses across voxels (rep-
resented by the aspect ratio of the blue and red ellipse for untrained and trained objects, respectively).

Op de Beeck et al. • Training Alters Object Representations in Cortex J. Neurosci., December 13, 2006 • 26(50):13025–13036 • 13029



p � 0.05). Furthermore, the difference be-
tween responses to trained and untrained
stimuli in the post-training scan session
was significant in LOC (t(8) � 5.77; p �
0.001, paired t test), but not in rFFA (t(8) �
1) or foveal V1/V2 (t(8) � 1.16; p � 0.25).
In none of these areas did we find a signif-
icant ( p � 0.05) main effect of session or
training. The differences between areas in
the interaction between session and stim-
ulus condition were consistent across sub-
jects, as indicated by a significant three-
way interaction between area (LOC, rFFA,
and V1/V2), session, and stimulus condi-
tion (F(2,7) � 13.80; p � 0.005).

These data are summarized with a
training index that compares the activa-
tion difference between trained and un-
trained classes after training while sub-
tracting out pretrained differences (see
Materials and Methods). The higher this
index, the more the BOLD response was
increased for the trained object class rela-
tive to the untrained object classes. As
shown in Figure 5b, the only region show-
ing a significantly positive training index is
LOC. Furthermore, a direct between-area
comparison revealed that the training in-
dex was significantly stronger in LOC than
in rFFA (t(8) � 2.5; p � 0.05) or foveal
V1/V2 (t(8) � 4.86; p � 0.001, paired t
test). Finally, LOC was the only region in
which the training index was positively
correlated across subjects with the behav-
ioral improvement subjects showed dur-
ing training (LOC, r � 0.65, p � 0.03;
rFFA, r � 0.19, p � 0.20; foveal V1/V2, r �
�0.29, p � 0.5). The correlation in LOC
was significantly stronger than the correla-
tion in V1/V2 ( p � 0.05), but not signifi-
cantly different from the correlation in
rFFA ( p � 0.16).

As discussed previously (Grill-Spector,
2003), the LOC is a large region of interest
that extends from lateral occipital gyrus to
the ventral surface of the brain (fusiform
gyrus). In a more detailed analysis (Fig. 5c,d), we chose four
smaller ROIs in the LOC: object-selective voxels in the right lat-
eral occipital cortex (right LO), left LO, right ventral surface
[commonly referred to as right posterior fusiform (right pFs)]
and left ventral surface (left pFs). The training index was signifi-
cantly different from zero in all these regions with the exception
of left pFs (training index in left pFs, p � 0.051). The training
index was significantly larger in the LO than in pFs (t(8) � 4.13;
p � 0.005, paired t test). In addition, the training effect in the LO
but not pFs was significantly correlated across subjects with the
behavioral improvement subjects showed during training (LO,
r � 0.83, p � 0.01; pFs, r � 0.32, p � 0.40) (supplemental Fig. S4,
scatter plots of behavioral improvement and training index,
available at www.jneurosci.org as supplemental material). The
correlation in the LO was significantly stronger than the correla-
tion in the FFA ( p � 0.05) and in V1/V2 ( p � 0.01). Further-
more, the training index was significantly larger in the two right

ROIs than in the two left ROIs (t(8) � 2.38; p � 0.05, paired t test).
Interestingly, there was also a large difference between the LO and
pFs in their overall responsiveness before training (1.45 PSC and
0.81 PSC, respectively), whereas right and left ROIs responded
similarly to the novel object classes before training (1.14 PSC and
1.13 PSC, respectively).

The differential training effects found in these ROIs (LOC,
rFFA, foveal V1/V2, and the subdivisions of the LOC) falsify
several of the hypotheses. The significant differences in training
effects between the ROIs are not consistent with an additive off-
set. A multiplicative gain might explain some of the differences
between regions. It is consistent with the strongest training effects
in LOC (as we found) because this region responded more
strongly to the to-be-trained objects before training than did
rFFA or foveal V1/V2, and it is also consistent with the stronger
training effects in the LO compared with pFs. If we describe the
training effect by a divisive index (e.g., the post-trained response

Figure 4. Functional activations for trained objects before and after training. Activations (significance maps thresholded at
p � 0.0001, uncorrected) are shown for the contrast [trained � untrained], with red/yellow indicating positive contrast and blue
indicating negative contrast. a, Functional activation overlaid on a coronal anatomical slice for three subjects. The left, middle, and
right subjects were trained with the smoothies, spikies, and cubies, respectively. These subjects were representative in the size of
training effects seen across the population. Slices are shown with right hemisphere at the left. b, Functional activation overlaid on
a ventrolateral view of the inflated brain of a fourth subject (trained with the smoothies).
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to trained objects divided by the post-trained response to un-
trained objects), then the LOC is still the only region with a sig-
nificant training effect (LOC, t(8) � 6.56, p � 0.001; rFFA, t(8) �
0.06, p � 0.4; V1/V2, t(8) � 1.98, p � 0.05), but a direct between-
area comparison revealed that the divisive training index was not
significantly stronger in the LOC than in the other two areas (t
test, p � 0.20). However, a multiplicative gain cannot account for
the fact that right LOC showed training effects almost twice as
large as left LOC (each responding similarly to the trained objects
before training). This indicates that training changes the spatial
distribution of activity across cortex, in this case between right
and left hemisphere. Thus, the ROI results provide only partial
support for the multiplicative gain hypothesis.

The lack of significant training effects in rFFA is inconsistent
with the expertise hypothesis. We focused on the right FFA be-
cause that was the region and hemisphere claimed to show effects
of training and experience (Gauthier et al., 1999), but the left FFA
did not show a positive training index either (t(8) � 0.87; p � 0.4).
The verbal reports of our subjects after the experiment provide a
clue why some previous studies may have seen training effects in
the rFFA. The subject with the highest rFFA training index in our
study was the only subject that reported interpreting the training
stimuli as being face-like (specifically, as “women wearing hats;”
for this subject the training stimuli were smoothies). This one
subject was an outlier in the size of the rFFA training index (0.38
PSC) compared with the rFFA training index in the other eight
subjects (mean, �0.01 PSC, SD, 0.15). None of the other subjects
reported interpreting the smoothies as face-like (although FFA
responded more strongly to smoothies than spikies or cubies
across all subjects) (supplementary material SM2, available at
www.jneurosci.org as supplemental material). The other two
subjects trained with smoothies did not show a large training

index (�0.04 PSC and �0.03 PSC). Thus, the training index in
rFFA varied substantially across subjects, and the subjective in-
terpretation of the objects during training might be one of the
factors underlying this variability.

In summary, training increased the response to trained rela-
tive to untrained objects in object-selective cortex, especially in
the right lateral occipital gyrus. No significant effect of training
was observed in primary visual cortex or face-selective cortex.
This spatial distribution of training effects is not consistent with
an additive offset and the expertise hypothesis.

What is the effect of training on the distributed response
pattern across visual cortex (voxel-wise analyses)?
The ROI analyses suggested that a multiplicative gain might ex-
plain part of the results (only training effects in LOC, a region that
had a large pretraining response), but that in addition training
changed the spatial distribution of responses across cortex (e.g.,
the much larger training effect in the right than in left LOC,
whereas pretraining responses were the same in the two hemi-
spheres). We tested the spatial distribution of training effects in
more detail. An important requirement for a detailed investiga-
tion of the relationship between pretrained and post-trained re-
sponses across voxels is the ability to compare the responses of
individual voxels between the two sessions. In all previous anal-
yses described here (and in all previous published training stud-
ies), the two sessions were processed independently and relatively
large regions of interest were defined based on identical criteria in
each session. In all of the following analyses, we analyzed the two
sessions as one large session, registering all volumes of a subject to
the same functional reference volume (see Materials and Meth-
ods). Although this registration across sessions cannot be perfect,
extensive analyses indicate that it is good (see Results) (supple-
mental material SM1, available at www.jneurosci.org as supple-
mental material). Further, any registration errors would affect
trained and untrained stimuli to the same extent and thus cannot
bias our conclusions about training effects because these conclu-
sions are based on comparisons between trained and untrained
stimuli. This between-session alignment allowed us to investigate
at a more detailed level how pretraining responses change after
training. We investigated the effect of training on the distributed
pattern of responses across all visually active voxels, an average of
12,122 voxels per subject (see Materials and Methods).

The variation of responses for each object class across voxels
can be summarized for each subject as a scatter plot in which each
data point represents a voxel with the pretrained response on the
x-axis and the post-trained response on the y-axis, as shown sche-
matically in Figure 3. The scatter plot pooled across all subjects is
shown in Figure 6a– c. As in previous studies (Haxby et al., 2001;
Spiridon and Kanwisher, 2002), we used the normalized response
in each voxel for each object class in the two sessions, so that for
each voxel the average response across the three object classes was
zero in each session (see Materials and Methods).

The effect of training on overall responsiveness is captured for
each subject by calculating the training index (see Materials and
Methods) for this entire population of visually active voxels. Av-
eraged across subjects, this training index was 0.13 PSC (SEM,
0.02), significantly different from zero (t(8) � 6.12; p � 0.001).
This indicates that the response of a visually active voxel was on
average 0.13 PSC higher for the trained object class than for the
untrained object classes. Thus, in agreement with the conclusion
from previous analyses, training is associated with an increase in
the average response to the trained objects across visual cortex.

A multiplicative gain would induce a difference between the

Figure 5. Effect of training on responses (percentage signal change from fixation condition)
in ROIs. a, PSC for trained and untrained object classes before and after training for three regions
of interest: LOC, right FFA (rFFA), and foveal V1/V2. Error bars show the SEM across subjects of
the difference in the response between trained and untrained objects. Asterisks indicate cases in
which trained and untrained conditions were significantly different (*p � 0.05; **p � 0.001).
b, The training index in each of these ROIs. The error bars show the SEM across subjects of the
training index in each ROI. Asterisks indicate ROIs in which the training index was significantly
different from zero (*p � 0.05; **p � 0.001). c, PSC for trained and untrained object classes
before and after training for four subregions of LOC: right LO (RLO), left LO (LLO), right pFs
(RpFs), and left pFs (LpFs). Conventions are as in a. d, The training index in each of the subre-
gions of LOC. Conventions are as in b.
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scatter plot for trained objects and the
scatter plots for untrained objects: the
strongest training-related response in-
crease should be found in voxels with the
strongest pretrained response. As shown
in Figure 3b, this would result in an in-
creased regression slope when post-
trained responses are predicted from pre-
trained responses with orthogonal
regression (see Materials and Methods).
Without training effects, we expect a slope
of 1 for all object classes, reflecting the fact
that voxels with a difference in pretraining
response of 1 PSC are expected to have an
average difference in post-training re-
sponse of 1 PSC. A multiplicative gain ef-
fect would increase the regression slope for
the trained objects to a level significantly
higher than 1. This prediction was not
confirmed: although a trend was observed,
there was no significant difference across
subjects (t(8) � 0.97; p � 0.3, paired t test)
in the regression coefficient for the trained
object class (median, 1.17) compared with
the coefficient for the untrained classes
(median, 1.03).

Thus, these results do not support a
multiplicative gain (because training ef-
fects in each voxel could not be predicted
from pretrained responses in that voxel).
Alternatively, training may change the
spatial distribution of activity across the
cortex: if training alters the spatial distri-
bution of the responses to the trained
objects, then training will reduce the cor-
relation between pretraining and post-
training responses for the trained objects
compared with untrained objects. That is,
some voxels with a low pretraining re-
sponse might have a large training-related
increase in response, whereas other voxels with a higher pretrain-
ing response might show less of an increase or even a reduction in
response. This training-related between-session variability in re-
sponsiveness would not be as great for the untrained objects, and
as a consequence a change in the spatial distribution of activity
would be manifested by a lower correlation between the pretrain-
ing and post-training response distribution for the trained ob-
jects compared with the correlation found for untrained objects
(Fig. 3c). Consistent with this prediction, we found that the cor-
relation between pretrained and post-trained responses across
voxels was significantly lower across subjects (t(8) � 2.41; p �
0.05, paired t test) for the trained object class (r � 0.26) than for
the untrained object classes (r � 0.34). Nevertheless, this
between-session correlation remained significant and positive
even for the trained object class (t(8) � 4.98; p � 0.005), indicat-
ing that the change in distribution of activity resulting from train-
ing only partially altered the pretraining distribution of activity.

Additional analyses indicate that the two reported effects of
training, increased responsiveness overall and a change in the
distribution of activity, were not completely distributed across
the visual cortex. As described in more detail in the supplemen-
tary material (SM3, available at www.jneurosci.org as supple-
mental material), we selected two large and mutually exclusive

subpopulations from all visually active voxels: the retinotopic
cortex and object-selective cortex. Training effects were much
stronger in the object-selective cortex than in retinotopic cortex.
The training index was larger in the object-selective cortex than
in retinotopic cortex (t(8) � 3.26; p � 0.02, paired t test), and the
change in distribution of activity (measured by the lower
between-session correlation for trained compared with un-
trained objects) was more pronounced in the object-selective
cortex than in retinotopic cortex (t(8) � 2.47; p � 0.05).

Within the object-selective cortex, the training-related change
in distribution of activity spanned functionally distinct subre-
gions. The lower between-session correlation for trained com-
pared with untrained objects was present in several mutually ex-
clusive subpopulations of object-selective voxels (supplemental
material SM3, available at www.jneurosci.org as supplemental
material): voxels with a significant preference for the trained ob-
jects before and/or after training (t(8) � 3.66; p � 0.01, paired t
test), voxels with a significant preference for one untrained object
class above another untrained object class before and/or after
training (t(8) � 2.38; p � 0.05), and voxels with a significant
preference for objects above scrambled images before and/or af-
ter training but without any specific selectivity for one object class
above another (t(8) � 3.04; p � 0.02). Thus, changes in the dis-

Figure 6. Effect of training on the spatial distribution of responses across cortex. a– c, Scatter plots of the normalized response
in individual voxels before training versus after training for the trained object class (a) and for the two untrained object classes (b,
c). All visually active voxels of all subjects are visualized together (analyses are done per subject). Each crosshair in the scatter plots
represents the data from one voxel. The response of each voxel in each session was normalized to a mean of zero by subtracting the
mean response across all object classes (Haxby et al., 2001). As described in the text, the data of trained and untrained classes show
two differences that are significant across subjects: the trained object class is associated with higher post-trained responses than
the untrained object classes, and the correlation between pretrained and post-trained responses is lower for the trained class than
for the untrained classes. d, Effect of training on the percentage of correct discrimination when the pretrained distribution of
responses is used to categorize the post-trained activation maps. Discrimination is shown separately for pair-wise comparisons
that involve the trained object class and for other pair-wise comparisons, and as a function of cortical region. Cortical regions are
retinotopic cortex and three subdivisions of object-selective cortex that are labeled according to their preferred object class: voxels
with a significant preference for the trained objects before and/or after training (Trained), voxels with a significant preference for
one untrained object class above another untrained object class before and/or after training (Untrained), and voxels with a
significant selectivity for objects over scrambled images before and/or after training but without any specific selectivity for one
object class above another (No preference). The error bars show the SEM across subjects.

13032 • J. Neurosci., December 13, 2006 • 26(50):13025–13036 Op de Beeck et al. • Training Alters Object Representations in Cortex



tribution of activity do not only occur in subregions that show
selectivity for the trained class (before or after training), but also
occur in regions with a preference for an untrained class and in
regions with an overall preference for objects over scrambled
images (without a specific selectivity for smoothies, spikies, or
cubies). These analyses indicate that the change in the spatial
distribution of activity is distributed across several subregions in
the object-selective cortex.

Thus, training changed the spatial distribution of activity
across the object-selective visual cortex in a way that is not con-
sistent with a multiplicative gain.

The correlations that we have calculated here have been used
before to calculate a pair-wise discrimination index (Haxby et al.,
2001; Spiridon and Kanwisher, 2002). This discrimination index
captures how well object classes can be distinguished based on the
spatial distribution of responses, and above-chance performance
(� 50%) shows that activation maps in one subset of the data can
be quite accurately categorized based on activation maps from
another subset. In our study, the two subsets of data are the
pretrained and the post-trained scan session. We expect above-
chance performance in a discrimination between two untrained
object classes. However, given that the spatial distribution of re-
sponses is changed because of training, we expect lower perfor-
mance in a discrimination between the trained object class and an
untrained class. Figure 6d shows the results for the same subre-
gions that were described above. We found similar discrimina-
tion performance for trained and untrained objects in the retino-
topic cortex (t(8) � 1.30; p � 0.23, paired t test). In contrast, lower
discrimination performance for trained than for untrained ob-
jects was seen in voxels with a significant preference for the
trained objects before and/or after training (t(8) � 3.55; p � 0.01)
in voxels with a significant preference for one untrained object
class above another untrained object class before and/or after
training (t(8) � 2.28; p � 0.052), and in voxels with a significant
preference for objects above scrambled images before and/or af-
ter training but without a preference for one object class above
another (t(8) � 2.48; p � 0.05). These results using the discrimi-
nation index confirm the correlation analyses, showing that pat-
terns of response for trained objects have changed more during
the training interval than patterns of response for untrained
objects.

How large are the largest training-related response increases?
The fact that training changed the spatial distribution of activity
across the object-selective cortex means that the effect of training
on responses in some voxels was different from the effect of train-
ing in other voxels. As a consequence, we would expect to find
some focal subregions in which training effects are much larger
than the average training-related response increase in the object-
selective cortex. The obvious candidates for voxels with maximal
training-induced selectivity are the aforementioned voxels with a
post-training preference for trained compared with untrained
object classes (illustrated in Fig. 3). To quantify the size of train-
ing effects in these voxels, we cannot use the same data as the data
used for identifying the voxels. This would lead to an over-
estimation of the size of training effects in these voxels in com-
parison to the effects computed in the previously mentioned and
independently localized ROIs. To avoid this problem, we divided
the post-training runs into “selection runs” and “test runs” (see
Materials and Methods), and we used the selection runs to inde-
pendently identify voxels activated significantly ( p � 0.0001, un-
corrected) in the contrast [trained � untrained] (here referred to
as trained voxels), excluding from this set any voxels with a sig-

nificant preference for contralateral stimuli. We then used the
test runs to quantify the training effects in these trained voxels
identified from the selection runs.

As shown in Figure 7, the preference for trained objects in
these selected trained voxels (91 voxels on average per subject)
was also found in the post-training test runs (t(8) � 7.81; p �
0.001, paired t test), indicating that it is a reliable preference.
Strikingly, these voxels responded about twice as strongly to ex-
emplars from the trained class (0.88 PSC) as to exemplars from
the untrained class (0.44 PSC) after training. Importantly, no
significant preference for the to-be-trained objects was found in
these voxels before training (t(8) � 1.18; p � 0.2, paired t test).
The training index in these voxels was 0.37 PSC (computed using
only the test runs of the post-training session). A control analysis
presented in supplementary material (SM4, supplemental Fig.
S3c, available at www.jneurosci.org as supplemental material)
shows that preferences for untrained object classes transfer across
sessions, so this lack of transfer of preferences across sessions in
trained voxels is caused by training and not problems with
across-session coregistration.

Thus, these trained voxels show a strong training-related in-
crease in responsiveness without a clear pretraining preference
for the trained objects. In addition, as shown in supplemental
material SM4 (available at www.jneurosci.org as supplemental
material), the large training effect in these trained voxels is not
caused by particularly strong object selectivity or face selectivity,
nor is it caused by a strong pretraining response to trained ob-
jects. In sum, the results of the analyses of these trained voxels are
not consistent with a multiplicative gain or the expertise hypoth-
esis, and they strongly support the idea that training changes the
spatial distribution of activity across cortex in a way that is not
related to pretraining responses or face selectivity.

The focus in this section on the relatively small number of
voxels with significant post-training selectivity might suggest that
training effects are localized to one or a few small subregions
around the object-selective cortex. However, this is not sup-
ported by our data. As shown in detail in supplemental material

Figure 7. Percentage signal change for trained and untrained object classes in trained vox-
els. Trained voxels were selected based on a significant post-training preference for trained
objects over untrained objects. Data are shown for different sets of runs: post-training selection
runs (the post-training runs used to select the voxels), post-training test runs (the other runs in
the post-training scan session), and pretraining runs (all runs in the first scan session). The error
bars show the SEM across subjects of the difference in the response between trained and un-
trained objects.
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SM5 (available at www.jneurosci.org as supplemental material),
the trained voxels consisted of a relatively high number of local
clusters of voxels. This local clustering of object selectivity and
preferences for trained objects is illustrated visually in Figure 8,
where we use a multidimensional color scale to represent the
selectivity of all visually responsive voxels in two subsets of post-
training runs for three subjects. Some of the object selectivity was
clearly replicable across these datasets, despite the relatively low
number of runs (each of the nine subjects showed a positive
correlation of selectivity across voxels between these two sets of
runs, with an average correlation of 0.34; SEM � 0.04). In addi-
tion, the color maps show the overall effect that trained objects
elicited stronger responses than untrained objects. Finally, these
high-resolution selectivity maps clearly illustrate the existence of
multiple subregions with a preference for trained above un-
trained objects.

To summarize, we analyzed several regions of interest, the

distributed response pattern across all visually active voxels, and
the voxels with the most significant post-training preference for
trained objects. These analyses converge on the conclusion that
training increases responsiveness to trained objects in visual cor-
tex, and that it changes the spatial distribution of activity across
the visual cortex in a way that is not consistent with a multiplica-
tive gain or the expertise hypothesis. This training-related re-
sponse increase and change in distribution of activity were rela-
tively distributed across small subregions in and around the
object-selective cortex.

Discussion
Our study provides a new characterization of the effect of object
discrimination training across the ventral visual pathway. First,
training produces increased responses to trained compared with
untrained objects; training-related decreases in response were
not found. Second, training effects are not uniformly distributed
across the ventral visual pathway: whereas some subregions of the
extrastriate cortex responded twice as strongly to trained com-
pared with untrained objects after training (and not differently to
these stimuli before training), other cortical regions (such as
rFFA and foveal V1/V2) showed no significant effect of training.
Third, the spatial distribution of training effects cannot be ac-
counted for fully in terms of a change in the gain of the response
to trained stimuli, nor is it related to face selectivity. In contrast,
training changes the spatial distribution of activity across the
visual cortex, and training effects were distributed across multi-
ple subregions in high-level object-selective cortex.

Several novel aspects of our method were important for ob-
taining these results. First, our relatively high-resolution scan-
ning (1.4 � 1.4 � 2 mm voxel size) involves considerably less
averaging across distinct neural populations than occurs in the
more standard resolutions used in human fMRI studies. This
reduction in “partial voluming” in the present study is likely
important to detect two-fold training effects distributed across
small subregions. Individual-subject analyses are also important
for avoiding the loss of resolution entailed in the necessarily im-
perfect registration across individual brains. Further, some of our
analyses were based on a between-session alignment of the func-
tional data for each subject, providing more detailed information
about the spatial distribution of training effects compared with
more traditional region-of-interest analyses. The combination of
these methods enabled us to show large training effects in rela-
tively small and discontiguous cortical regions.

Several aspects of the design of our study are important for
understanding the scope of our conclusions. First, we studied the
object-specific effects of training by using untrained objects as the
baseline condition. Second, subjects performed a control task in
the scanner for which the trained object differences were not
relevant (see Materials and Methods). Thus, we studied effects of
training that transfer across task conditions, and that are not
confounded by changes in performance or task difficulty. Third,
like all previous studies of complex object learning (Gauthier et
al., 1999; Grill-Spector et al., 2000; Kourtzi et al., 2005), our study
does not distinguish between effects of active training and effects
of passive exposure. The strongest evidence that our fMRI train-
ing effects are relevant for task performance is our finding that the
strength of training effects in the object-selective cortex is corre-
lated with behavioral improvements. Fourth, no study has inves-
tigated long-term retention of the behavioral and neural effects of
object learning, which is an important topic for future research.
Finally, we measured changes in the response to whole object
classes, rather than changes in the response to individual exem-

Figure 8. Stimulus preferences after training in odd and even runs. Stimulus preference is
represented by a continuous color scale. Saturation represents the amount of selectivity (no
saturation � white � same response to each object class), and hue represents which object
class is preferred. This scale was applied to each voxel that was visually responsive. This color
scale is overlaid on one unsmoothed functional slice in each of three subjects. The approximate
position of the slices is represented by the line intersecting the brain pictogram.
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plars. With the resolution of fMRI it might be difficult to find
differential responses to very similar exemplars of object classes
(e.g., two different faces), but it will be important for future stud-
ies to test whether training may change the response to individual
exemplars of the trained class.

Although our study is the first to investigate the effects of
object discrimination training throughout the human visual cor-
tex at this high resolution, several related studies have been re-
ported previously. Our finding that training increases responses
to trained objects in the extrastriate cortex is consistent with most
previous human imaging and monkey physiology studies that
used training procedures (Logothetis et al., 1995; Kobatake et al.,
1998; Gauthier et al., 1999; Grill-Spector et al., 2000; Grill-
Spector, 2003; Xu, 2005; Yue et al., 2006), although some studies
have found decreased responses (Baker et al., 2002; Kourtzi et al.,
2005). Effects in low-level visual cortex have been found after
training on simpler stimuli (Schiltz et al., 1999; Schoups et al.,
2001; Schwartz et al., 2002; Furmanski et al., 2004; Yang and
Maunsell, 2004) or after training to segment relevant stimuli
from a distractor background (Kourtzi et al., 2005; Sigman et al.,
2005). Together, this pattern of results across studies suggests
that the strongest effects of training occur at the cortical levels
most critical for performance on the trained task.

Our study adds several critical findings to this literature. First,
we formulated and tested several basic hypotheses about how
training might change the spatial distribution of activity across
the visual cortex. We found that training does not act simply as a
gain mechanism, a finding that argues against the idea that train-
ing induces an overall increase in attention or arousal for trained
compared with untrained objects (overall differences in attention
are also inconsistent with the equal behavioral performance dur-
ing scanning for trained vs untrained objects). Rather than
changing the overall gain of visual responses, training changes the
spatial distribution of activity across the visual cortex, most no-
tably in high-level object-selective cortex.

Second, in contrast to a previous study claiming that effects of
training with complex objects are primarily found in the rFFA
(Gauthier et al., 1999), we found training effects in the object-
selective cortex but not in the rFFA. The existence of training
effects in non-face-selective cortex is not in contradiction with
the previous work, because some of the data in that study sug-
gested substantial training effects in the object-selective cortex
(Gauthier et al., 1999; Yue et al., 2006). Thus, it is likely that the
effects seen previously reflected a more general training-related
increase in response that was not restricted to face-selective re-
gions. Nevertheless, training effects in the rFFA were absent in
our study whereas the previous work found significant effects.
There were several differences between these studies that might
explain this discrepancy. Previous studies have emphasized the
importance of “configural processing” with very familiar objects
in relation to activation in the FFA, but it is controversial whether
any highly familiar nonface objects are processed “configurally”
in the same way as faces (Gauthier and Bukach, 2006; McKone
and Robbins, 2006). It remains a topic for further investigation
whether the training effects observed here in extrastriate cortex
reflect neural selectivity for the entire object shape, or for more
local components or features of the trained objects.

One other important factor to explain differences between
studies may be that the stimuli used previously by Gauthier et al.
(1999) (“Greebles”) can be seen as human-like, an interpretation
that was encouraged because subjects learned proper names for
the Greebles, and were trained to recognize them at the “gender,”
“family,” and “individual” level. Indeed, the one subject in our

study who construed our stimuli as human-like (specifically, as
“women wearing hats”) was also the only subject who showed
training effects in the face-selective cortex. Thus, training effects
in the rFFA may arise only when subjects construe the stimuli as
face-like or human-like. Finally, although many studies have pro-
posed that lab-training paradigms provide a valid way to test the
relationship between expertise and face selectivity (Gauthier et
al., 1999; Gauthier and Logothetis, 2000; Gauthier and Tarr,
2002; Palmeri and Gauthier, 2004), 10 h of lab training is a far cry
from a lifetime of experience, and the present study does not
address the effects of long-term expertise. Two previous studies
have shown effects of real-world expertise in the face-selective
cortex (Gauthier et al., 2000; Xu, 2005), but these studies did not
investigate the response pattern beyond the face-selective cortex
to exclude hypotheses such as an additive offset or a multiplica-
tive gain.

Overall, our results are consistent with the proposal that train-
ing results in the creation of new object representations in high-
level visual cortex (Henson et al., 2000), and that the largest ef-
fects of training occur in regions that already process stimulus
properties that are relevant during training, even if stimuli were
not initially processed that way. Thus, as we showed here that
training on object discrimination leads to enhanced activity in
and around the object-selective cortex, others have argued that
training to categorize human-like forms increases the response to
these stimuli in the rFFA (Gauthier et al., 1999), training subjects
to use novel objects as navigational landmarks leads to enhanced
responses in the parahippocampal place area (Janzen and van
Turennout, 2004), and training subjects to use novel objects as
tools leads to enhanced responses in regions that respond
strongly to tools (Weisberg et al., 2006). However, our study also
revealed differences in the size of training effects at a finer scale
between subregions of the object-selective cortex. We were not
able to explain this spatial distribution of training effects by the
distribution of either face selectivity or pretraining response. It
remains to be determined what other factor explains this spatial
distribution.

In sum, we found that training increases responses and
changes their distribution across the object-selective cortex.
There was no simple relationship between the distribution of
training effects and the distribution of face selectivity or pre-
trained responsiveness. Future investigations into the underlying
neuronal mechanisms may make the most rapid progress by
combining human and monkey fMRI studies, which enable sam-
pling a broad region of cortex in a similar way in the two species,
with higher resolution techniques such as single-unit recording
(Tsao et al., 2006).
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SM1. Comparison of different methods for between-session alignment 

 

  

 

There are at least two procedures that can be followed to align two separate 

functional sessions of one subject: direct functional alignment and indirect 

anatomical alignment. In direct functional alignment (which we used in this 

study), the two sessions are treated as one large session, and all the volumes are 

aligned with one functional reference volume in one step at the pre-processing 

stage. In contrast, in indirect anatomical alignment there are two steps. First, all 

functional volumes of each session are aligned with a within-session functional 

reference volume during pre-processing. Second, this within-session functional 

reference volume of each functional session is aligned with an anatomical 

reference volume. 

 

  

 

Each of these methods has advantages and disadvantages. Advantages of direct 

functional alignment are that it requires no alignment between different image 

modalities (e.g., from bold EPI images to T1-weighted anatomical images), and it 

requires each volume to be re-sampled only one time during pre-processing. 

However, we can expect this method to perform poorly when the slice 



prescriptions in the two sessions are very different. Algorithms such as those used 

in AFNI are not designed to deal with large image displacements. Furthermore, 

differences in head or slice position might be associated with position- and 

session-specific geometric distortions. Indirect anatomical alignment can be 

expected to perform better than direct functional alignment when very different 

slice prescriptions are used. However, it requires the alignment of different image 

modalities, and multiple re-sampling of each volume (one time during pre-

processing and another time for the mapping to the anatomy). 

 

  

 

This overview suggests that direct functional alignment is a good strategy when 

the slice prescription in the two sessions is very similar. Since we were careful to 

take very similar slice prescriptions in the two sessions, this is the strategy we 

opted for. Our data indicate that the strategy worked well enough for our purposes. 

For example, preferences for untrained object classes replicate very well across 

sessions (see SM4 and Fig. S3c), and the distributed profile analyses show positive 

correlations between object preferences before training and object preferences 

after training. Most importantly, any conclusion about training-related changes in 

the spatial distribution of activity is based on a comparison of results for trained 

objects with results for untrained objects (each of which should be affected equally 

by any problem with alignment). 



 

  

 

Nevertheless, we wondered how the quality of alignment with this strategy 

compares to the quality of alignment that would be obtained with an indirect 

anatomical alignment. We compared the two methods using face selectivity in the 

right fusiform face area (rFFA). This is an interesting benchmark for several 

reasons. First, it is a well-known region of interest with replicable selectivity. 

Second, rFFA is not a very large region, so problems with alignment can be 

expected to result in poor across-session replicability of face selectivity. Third, 

rFFA is located in the proximity of the large susceptibility artifact in the temporal 

lobe. Thus, this is a region that should show inferior quality of alignment if 

geometric distortions are different in different sessions or in different image 

modalities. 

 

  

 

For each procedure, we defined rFFA based on the contrast [faces Ð objects] in 

three of the four post-training localizer runs (Òselection runsÓ). We assessed the 

quality of alignment by comparing the face selectivity in the fourth post-training 

Òtest runÓ  with the face selectivity in the pre-training scan session. For direct 

functional alignment, rFFA was defined using the functional data only. For 



indirect anatomical alignment, we only selected face-selective voxels that 

intersected with the cortical surface as defined after anatomical reconstruction 

with Freesurfer software. These face-selective patches on the cortical surface were 

than re-mapped to each functional session. 

 

  

 

Each method resulted in a good quality of alignment, so that the post-training face 

selectivity was also found before training:  The pre-training difference between 

face and object responses was significant across subjects for the direct functional 

alignment (t(8) = 4.63, p = 0.0017; see Fig. S1a) and for the indirect anatomical 

alignment (t(8) = 2.90, p = .02; see Fig. S1b). Nevertheless, the data suggest that 

the between-session alignment was not perfect, since this pre-training difference 

tended to be smaller than the difference between object and face responses found 

in the post-training test run. This trend was noted for each method, but it was not 

significant for direct functional alignment (t(8) = 1.85, p = 0.10) nor was it 

significant for indirect anatomical alignment (t(8) = 1.45, p = 0.18). Thus, in our 

study where we aligned two sessions with very similar slice descriptions, the two 

methods for between-session alignment seem to result in a good across-session 

replication of category-selective responses. 

 
  
 



SM2. Responses to specific object classes in FFA and LOC 

 

We investigated whether the three novel object classes were associated with the same 

overall response before training in two regions of interest, the fusiform face area (FFA) 

and the lateral occipital cortex (LOC).  

 

The FFA responded more strongly to smoothies than to spikies or cubies, and this effect 

was found both in right FFA (smoothies: 0.63 PSC; spikies/cubies: 0.41 PSC: t(8) = 3.48, 

p < 0.01) and in left FFA (smoothies: 0.43 PSC; spikies/cubies: 0.26 PSC; t(8) = 2.96, p 

< 0.02). The higher response for smoothies was also found if the analyses were restricted 

to the eight subjects that did not interpret the smoothies as face-like, both in rFFA (t(7) = 

2.98, p < 0.05) and in left FFA (t(7) = 2.60, p < 0.05). This small preference might be 

related to previously reported responses in FFA to concentric patterns (Wilkinson et al., 

2000).  

 

The stronger response to smoothies in FFA was not a general characteristic of the 

response strength in the visual system to the three object classes. There was no significant 

preference for or against any of the three object classes in LOC (p > 0.10, paired t-tests), 

and, if anything, the LOC response to smoothies tended to be smaller than the response to 

the other two classes (smoothies: 1.12 PSC; spikies: 1.21 PSC; cubies: 1.16 PSC). 

 

A related question is whether the strength of training effects in FFA depends on the 

object class that a subject is trained with. The most straightforward prediction would be 



that the FFA would show the strongest training effect when a subject is trained with the 

preferred object class (smoothies). This is the prediction of a multiplicative gain, and this 

prediction was not confirmed by our data in general (see main Results section). More 

anecdotal evidence against this comes from the training index in rFFA for the three 

subjects trained with the smoothies. Only the subject that interpreted the smoothies as 

face-like showed a large training index, the other two subjects did not (training index –

0.04 PSC and –0.03 PSC). Thus, as far as we can rely on such a low number of subjects, 

the important relationship seems not to be the stimulus class by itself, but rather whether 

or not that stimulus is interpreted as a face.  
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SM3. Effects of training in sub-populations of all visually active voxels 

 

Across all visually active voxels, training was associated with an increased 

responsiveness and a change in the spatial distribution of activity across cortex. If these 

two effects were completely distributed across visual cortex, then they should be found in 

all regions of visual cortex, including both early retinotopic regions and higher-level 

object-selective regions. To test this hypothesis, we selected two large sub-populations 

from all the visually active voxels. The first sub-population was comprised of the voxels 

that significantly preferred stimuli presented to the contralateral visual field above 

ipsilateral stimuli in the localizer scans in at least one session (average of 4322 voxels in 

individual subjects). These voxels include most of parafoveal retinotopic cortex, which is 

where we expect to find voxels that are differentially activated by the foveally presented 

stimuli (which have some differences between object classes in their retinotopic 

envelope). The second, object-selective sub-population was comprised of voxels that 

showed any sort of object selectivity in at least one session, either by responding 

significantly more strongly to the three novel object classes than to scrambled images, or 

by responding significantly more strongly to one of the three novel object classes than to 

the other two (average of 1397 voxels in individual subjects). In order to clearly 

distinguish between these two populations, we did not include voxels that fulfilled both 

selection criteria (contralateral preference and object selectivity).  

 

As shown in Supplementary Table 1, training effects were stronger in object-selective 

cortex than in retinotopic cortex. The training index was twice as large in object-selective 



cortex compared to retinotopic cortex, and the change in spatial distribution (measured by 

a reduction in between-session correlation for trained compared to untrained objects) was 

only found in object-selective cortex. The latter difference between retinotopic cortex and 

object-selective cortex was not due to a nonreliable response profile in retinotopic cortex 

(if correlations were zero even for untrained objects, then they could not go down by 

training): the average correlation between the two sessions was 0.29 in retinotopic cortex 

and 0.30 in object-selective cortex. To summarize, training was associated with a small 

increase in responsiveness but no change in the distribution of activity in retinotopic 

cortex. In contrast, object-selective cortex showed a strong increase in responsiveness 

and a change in the spatial distribution of this response across voxels. 

 

Additional analyses showed that this effect was seen in several mutually exclusive sub-

populations of this large object-selective population (Supplementary Table 1): voxels 

with a significant preference for the trained objects before and/or after training (trained-

preferring voxels; average of 166 voxels per subject), voxels with a significant preference 

for one of the two untrained object classes above the other untrained object class 

(untrained-preferring voxels; average of 157 voxels), and voxels with a significant 

preference for objects above scrambled images before and/or after training but without 

any specific selectivity for one object class above another (not-class-selective voxels; 

average of 1099 voxels). Thus, changes in the distribution of activity do not only occur in 

sub-regions that show selectivity for the trained class (before or after training), but also 

for regions with a selectivity for other object classes and regions with responses for 

objects in general (without a specific selectivity for smoothies, spikies, or cubies).  



 

 

Supplementary Table 1. Mean, standard error of the mean (across subjects), and significance of 

the training index and the difference between untrained and trained objects in the correlation of 

their response profile between scan sessions 

 

           Training index       Difference in correlation 

 

All active voxels   0.13 (+- 0.02), p < 0.001 **      0.08 (+- 0.03), p < 0.05 * 

Retinotopic voxels   0.10 (+- 0.02), p < 0.001 **      0.04 (+- 0.03), p > 0.20 

Object-selective voxels   0.18 (+- 0.03), p < 0.001 **      0.13 (+- 0.05), p < 0.02 ** 

Trained-preferring voxels  0.45 (+- 0.09), p < 0.001 **      0.39 (+- 0.11), p < 0.01 ** 

Untrained-preferring voxels  0.16 (+- 0.06), p < 0.02 **      0.26 (+- 0.12), p < 0.05 * 

Not-class-selective voxels  0.14 (+- 0.03), p < 0.001 **      0.16 (+- 0.06), p < 0.02 ** 

 

Significantly different from zero: * p < .05; ** p < .02 

 

 

 

We conclude in the Results section that the lower between-session correlation for trained 

objects compared to untrained objects is related to a change in the distribution of activity 

from one session to the other. However, a low reliability of the data for the trained 

condition in one of the two scan sessions would also result in a lower correlation. We 

therefore assessed the reliability of the data from all visually active voxels by dividing the 

data from each session in two sub-sets (first and last runs versus middle runs, that is, the 



same division as the selection runs vs. test runs comparison used in the main text). The 

within-session correlation/reliability was very similar for trained objects and untrained 

objects before training (0.29 and 0.33, respectively; t(8) = 1.34, p > 0.20), and tended to 

be even larger (more reliable) for trained than untrained objects after training (0.38 and 

0.27, respectively; t(8) = 2.16, p = 0.06). Thus, the data for trained objects are not less 

reliable than the data for untrained objects. 

 

Another alternative explanation for the lower between-session correlation for trained 

objects compared to untrained objects would be a nonlinear relationship between BOLD 

responses and underlying neuronal activity (e.g., due to saturation effects). It is possible 

that training increases neuronal activity with an additive offset or multiplicative gain, but 

that due to a nonlinearity this training effect is manifested as a change in the spatial 

distribution of BOLD responses. For example, a very strong increase in underlying 

neuronal response might be associated with a strong increase in BOLD response in a 

region where this BOLD response was not saturated yet, while a ceiling effect might 

cause the increase in BOLD response to be less in another more saturated region that has 

the same increase in the underlying neuronal response. The more the overall BOLD 

response changes, the more we expect such nonlinearities to come into play. Thus, if the 

change in spatial distribution of activity would be caused by a nonlinear and spatially 

heterogeneous effect in the BOLD response that is caused by a homogeneous training-

related neuronal response increase, then we would expect a correlation across subjects 

between the overall activity increase (training index) and the change in spatial 

distribution of activity (expressed as the between-session correlation for trained objects 



subtracted from the between-session correlation for untrained objects). This prediction 

was not confirmed, with r = 0.29 (p > 0.4) for all visually active voxels and r = -0.18 (p > 

0.4) for all object-selective voxels. This suggests that the change in profile that we found 

is not due to a homogeneous training-related increase in the neuronal response that is 

hidden by the nonlinearity of BOLD responses. 

 

 



SM4. Effect of training in voxels with maximal post-training preference for trained 

objects 

 

We argue in the Results section that the voxels with maximal post-training preference for 

trained objects above untrained objects, referred to as trained voxels, did not show a 

preference for the to-be-trained objects before training, and that the large training effects 

in these voxels are not related to a strong general object selectivity, a strong pre-training 

response to the to-be-trained objects, or face selectivity.  Here we present further analyses 

that corroborate each of these conclusions. 

 

First, to show that the lack of between-session transfer of preferences in the trained 

voxels was due to training and not due to problems with co-registration of data across 

sessions, we selected a second population of voxels with a significant preference for one 

untrained class above the other untrained class in the post-training selection runs, 

excluding all voxels with a contralateral preference. As shown in Supplementary Figure 

3c, part of this preference for one untrained class above the other was also found in the 

post-training test runs (0.28 PSC difference). However, there was an equally strong 

preference (0.28 PSC difference) for one untrained class above the other in the pre-

training runs, showing that the post-training preference for this untrained class does not 

reflect a training effect. This finding contrasts with the aforementioned finding of no 

transfer of preferences across sessions in the trained voxels (shown in Figure 6 and again 

in Supplementary Figure 3a), and it indicates that this latter effect is related to training 

and that it is not caused by factors such as the quality of across-session co-registration.  



 

Second, the large training effect in the trained voxels was not due to an extraordinarily 

strong preference for objects in general compared to scrambled objects. The trained 

voxels showed some general object selectivity before and after training, as illustrated by 

the response of these voxels to objects and scrambled images in the localizer runs (Fig. 

S3b). As a population, the trained voxels showed a significant preference (t-test, p < 0.01) 

for objects above scrambled images in each of the two scan sessions. Furthermore, most 

of the trained voxels were located in the vicinity of object-selective cortex in the lateral 

occipital and fusiform gyri (as illustrated with Fig. 3 and S2). Nevertheless, less than one 

third of these voxels individually showed significant activation (p < 0.0001, uncorrected) 

in the contrast of [objects > scrambled] in the localizer runs (21 % of the trained voxels) 

or in the contrast of all three object classes minus scrambed images in the novel object 

runs (28 % of the trained voxels). This suggests that the voxels with strongest training 

effects were not always voxels with a strong general object selectivity (defined as a 

preference for all sorts of objects above scrambled images). In agreement with this 

suggestion, the trained voxels responded almost as strongly to scrambled images as to 

untrained objects in the novel object runs: The response to untrained objects and 

scrambled images was 0.44 PSC and 0.46 PSC in the post-training test runs (t(8) = .28, p 

> 0.5), and 0.62 PSC and 0.55 PSC in the pre-training session (t(8) = 1.16, p > 0.25). 

Thus, on average, the voxels with the most significant post-training preference for trained 

objects had a relatively weak general preference for objects above scrambled images. As 

a consequence, the large training effects in these trained voxels were not related to a 

particularly strong object selectivity. 



 

Third, the trained voxels responded much less strongly to the to-be-trained objects before 

training than did other brain regions with equal or even smaller training effects, in 

contrast to the predictions of a multiplicative gain. This is illustrated by a direct 

comparison of pre-training responses and training effects in these trained voxels with the 

results found in sub-regions of LOC. In a comparison between right LO and the trained 

voxels, the training index was approximately the same in the two populations of voxels, 

0.35 PSC in right LO versus 0.37 in the trained voxels. However, right LO responded 

much more strongly to the novel objects before training (1.45 PSC) than the trained 

voxels (0.64 PSC), t(8) = 4.52, p < 0.005. Even more strikingly, another subdivision of 

LOC, left LO, showed a significantly smaller training effect (0.20 PSC) than the trained 

voxels (t(8) = 2.42, p < 0.03), while left LO responded much more strongly to the novel 

objects before training (1.42 PSC) than the trained voxels (t(8) = 4.80, p < 0.001). Thus, 

the trained voxels showed an extraordinarily large training effect, the size of which 

cannot be explained by their pre-training response to the to-be-trained objects. 

 

Fourth, the responses of these voxels with maximal training effects are also interesting as 

a test for the expertise hypothesis mentioned in the Introduction. According to this 

hypothesis, the strongest training effects should be found in face-selective regions. In 

contrast to this prediction, the trained voxels were on average not selective for faces 

compared to objects (Fig. S3b), and they even tended to respond less to faces than to 

objects in each of the two scan sessions (t-test, p = 0.11 and p < 0.05 in the pre-training 

and post-training session, respectively).  



 

To summarize, the results of the analyses of these trained voxels, which we can consider 

as being the hot-spots of training effects, are not consistent with a multiplicative gain or 

the expertise hypothesis, and they strongly support the idea that training changes the 

profile of response across cortex.  

 



SM5. Cluster analysis of trained voxels and face-selective voxels 

 

We performed a cluster analysis on the distances between voxels to compare the number 

of clusters comprising the trained voxels with the number of clusters comprising the face-

selective voxels. We determined the number of clusters formed by a set of voxels with an 

algorithm that classified voxels as belonging to one cluster when these voxels were 

connected by a continuous array of other voxels or were only separated by a small 

distance. The distance between voxels that still counted as part of the same cluster was 

set by a distance parameter. For example, a distance parameter of 5 means that 2 voxels 

were put in the same cluster as long as there was no gap of more than 5 mm separating 

the voxels.  

 

The non-retinotopic voxels with a significant post-training selectivity for trained 

compared to untrained objects (trained voxels) formed many small discontinuous 

clusters. We selected these voxels based on all post-training runs after alignment to the 

pre-training session (average of 212 voxels per subject). We performed the cluster 

analysis on the coordinates of these voxels (with distance parameter set to 5);  The 

trained voxels belonged to an average of 18 different clusters per subject. As a 

comparison, we performed the same analysis on all voxels with a significant preference 

for faces compared to objects (149 voxels per subject), and these voxels formed a 

significantly lower number of clusters (7.7 clusters per subject; t(8) = 3.33, p = 0.01). 

This number of face-selective clusters is close to the expected number given that three 



face-selective regions have been described before (in fusiform gyrus, lateral occipital 

gyrus, and superior temporal sulcus), and these regions can be found in each hemisphere.  

 

The different number of clusters may be affected by the fact that there tended to be fewer 

face-selective voxels than trained voxels (t(8) = 2.15, p = 0.07). However, even when the 

selection criterion for the trained voxels was more stringent (significance level of 

0.00005), as such selecting 154 voxels per subject (not different from the number of face-

selective voxels, t(8) = 0.87, p > 0.4), there were still twice as many clusters of trained 

voxels (average of 15.3 per subject) than of face-selective voxels (significant difference: 

t(8) = 2.88, p < 0.03).  The exact number of clusters depended strongly on the distance 

parameter, but there were always more clusters of voxels with a significant selectivity for 

trained objects compared to the number of clusters of face-selective voxels: there were 

significantly more trained clusters with the minimum distance of 2 mm (this is the 

distance between 2 adjacent voxels), and also with a distance parameter of 1 cm.  

 

Thus, voxels with a post-training preference for the trained objects form a relatively high 

number of local clusters. 

 












